RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2015

FIRST YEAR

Date : 21/05/2015 Time : 11 am – 3 pm MICROBIOLOGY (Honours) Paper : II

Full Marks : 100

[5]

[Use a separate Answer book for each group]

<u>Group - A</u>

(Answer <u>any five</u> of the following)

Justify the statements : 1. a) Reverse electron flow reduces growth rate of bacteria. [2.5]b) Moist heat is more effective than dry heat to control bacterial growth. [2.5]c) Write a brief note on Thermal Death Time. [2] 2. a) Mention different lithotrophic bacteria and the corresponding compounds that are utilised as electron donors. [2] b) Differentiate between nitrification and denitrification. [2] c) How does pH affect bacterial growth? [2] d) Name one suphur oxidizing bacteria. [1] a) What is the role of Fts Z protein? [2] 3. b) Write down the advantages of membrane filter count. [1.5]c) How does ethylene oxide influence bacterial survival? [1.5]d) Why is synchronous culture useful under certain conditions? [2] a) What are the adaptations of psychrophilic bacteria? [2] 4. b) What is the role of compatible solute? Give example. [2+1]c) What is chemostat? [2] 5. a) What is the difference between disinfectant and antiseptic? [3] b) Classify bacterial world in terms of oxygen requirement and tolerance. [2] c) What is the function of catalase? [2] a) What is the mode of action of penicillin? [2] 6. b) Write down three mechanisms of antibiotic resistance. [3] c) Draw the structure of the sulfonamide function group and mention the enzyme that is inhibited by this group of antimicrobials. [2] a) What do you mean by regression equation? [2] 7. b) You are given the following data Х Y 39.5 47.5Mean Standard deviation 10.817.8

Correlation coefficient between X and Y is 0.42. Find both regression lines.[5]a) Compare between mean deviation and standard deviation.[2]

b) In a monohybrid experiment the F_2 results are as follows :

Round-884 & Wrinkled-288. Hypothesize 3 : 1 ratio and test the goodness of fit.

 $\chi^2_{0.05(3)} = 7.82, \ \chi^2_{0.05(2)} = 5.99, \ \chi^2_{0.05(1)} = 3.84$

8.

9. a) Mention the application of 't' test.	[2]
b) Compute by x from the following data :	
x, y: (5, 2), (7, 4), (8, 3), (4, 2), (6, 4)	[5]
<u>Group - B</u>	
(Answer <u>any five</u> of the following)	
10. a) What is artificial radioactivity? Explain with example.	[2+1]
b) $K^{40} \left(t_{\frac{1}{2}} = 1.3 \times 10^9 \text{ yrs} \right)$ constitutes 0.012% of potassium in nature. The human body contains abo	out
0.35% K by weight. Calculate the total radioactivity resulting from K ⁴⁰ decay in a 70 kg human.	[3]
c) Define biological half-life of a radioisotope.	[2]
11. a) Derive the equation to relate between half-life and average life of a radio-active substance.	[2]
b) What advantage/s does Liquid Scintillation Counter have over GM counter?	[2]
c) What is "radiocarbon dating"?	[2]
d) Define Rad and REM.	[2]
12. a) What is LET? Explain its significance in biomedical applications.	[1+2]

b) Define specific activity and relative activity of a radioactive substance. [2]

[3]

[2+2]

[2]

[1]

- c) What factors govern the choice of a good solvent in Liquid Scintillation Counter?
- 13. a) Draw an outline diagram of a simple UV-vis spectrophotometer. State the functions of its different components. [3]
 - b) If 20.8% of the 340 nm radiation incident on a given solution of NADH is transmitted and if the extinction co-efficient of NADH at 340 nm is 6.22×10^6 cm² mol⁻¹, what is the concentration of NADH in the solution? (Assume a 1 cm pathlength). [3] [2]
 - c) State the principle of gel filtration chromatography.
- 14. a) A suspension of bacteria containing 400 mg dry weight per litre has an absorbance of 1.00 in a 1 cm cuvette at 450 nm. What is the cell density in a suspension that has a transmission of 30% in a 3cm cuvette? [2]
 - b) Calculate E_{max} for a compound whose maximum absorbance is $A_{max} = 1.2$. The cuvette cell length is 1.0 cm and the concentration is 0.076 g/L. The mass spectrum of the compound has the largest $\frac{m}{e}$ value at 100. [2]

c) What is FRET? Explain one principal application of this technique.

- 15. a) How many HIO₄ molecules are required to digest pentasaccharides. Explain. [2] b) What happens when glucose is treated with phenyl hydrazine? [3]
 - c) What are the differences between starch and cellulose?
 - d) Give an example of an amino-sugar.
- 16. a) Anomeric effect is inversely proportional to the dielectric constant —Discuss it with suitable example. [2]
 - b) Br₂ water oxidation of alpha-D-glucopyranose is 250 times faster than that of its beta anomers -Comment on the statement. [3]
 - c) Why is sucrose known as invert sugar? [2] d) Give one example each of a reducing and a non-reducing disaccharide. [0.5+0.5]

17. a)	Write down the	structure and isomerism found naturally in the following compounds.	
	i) Elaidic acid	ii) 1-stearo-2-linoleiyl glycerate	[2×2]
b)	Explain why co	conut oil tends to solidify at room temperature during winter but mustard oil	stays

- liquid? [2] [2]
- c) Differentiate between simple lipid and derived lipid with example.

18. a)	What is safonification number? How can it be used to find the molecular weight of a lipid?	[2+2]
b)	What is the difference between soap, shampoo, detergent and syndet.	[4]

<u>Group - C</u>

(Answer <u>any five</u> of the following)

19. a)	How can you prove that the replication is semidiscontinuous?	[3]
b)	State the principal biological functions mediated by membrane carbohydrates.	[2]
20. a)	How does the cell cope up with the torsional strain introduced in the genome during replication?	[2]
b)	How does cholesterol contributed to the fluidity / rigidity of biological membranes?	[3]
21. a)	What is meant by the processivity of a DNA polymerase? How is the processivity DNA polymerase III increased?	[3]
b)	What is the principal difference between a biomembrane and a micelle?	[2]
22. a)	Explain the role of SNARE proteins in vesicle shuttling.	[3]
b)	How is an open complex formed during initiation of replication of <i>E. coli</i> chromosome.	[2]
23. a)	Mention the crucial steps in the experiment of Avery, McLeod and McCarty by which they have concluded that DNA is the genetic material.	[3]
b)	How can you dislodge peripheral proteins from biomembranes?	[2]
24. a)	Why is addition of dNTPs or rNTPs during replication or transcription chemically forbidden in the $3' \rightarrow 5'$ direction?	[2]
b)	Briefly describe the role of mitochondria in apoptosis.	[3]
25. a)	Cite two evidences in favour of prokaryotic ancestry of mitochondria.	[2]
b)	'Golgi vesicles are often, referred to as the "traffic police" of the cell' Explain the statement with proper example.	[3]
26. a) b)	Name one plus end directed molecular motor and briefly explain its mechanism of action. [1] Proteins destined for secretion are translated primarily by the rough endoplasmic reticulum instead of by free ribosomes. What factors probably account for this selectivity?	[2]
27. a)	What is gap junction?	[2]
b)	Archaea contain unique membrane lipids as compared to eubacteria — Elaborate giving chemical structures.	[3]

_____ X _____